Ngô Quốc Anh

Ngô Quốc Anh, Associate Professor, Doctor
Position in Department:
Head of Department
Office:
T3-305
VNU mail:
Website:
https://anhngq.wordpress.com
Research Fields:
Giải tích hình học và phương trình đạo hàm riêng
Education :
  • 2008-2013: Tiến sĩ, Đại học Quốc gia Xin-ga-po.

Publications

  1. Existence and non-existence results for the higher order Hardy–Hénon equations revisited. Journal de Mathématiques Pures et Appliquées. 2022. doi:https://doi.org/10.1016/j.matpur.2022.05.006.
  2. A supercritical Sobolev type inequality in higher order Sobolev spaces and related higher order elliptic problems. Journal of Differential Equations. 2020;268:5996-6032. doi:https://doi.org/10.1016/j.jde.2019.11.014.
  3. A supercritical Sobolev type inequality in higher order Sobolev spaces and related higher order elliptic problems. Journal of Differential Equations. 2020;268:5996-6032. doi:https://doi.org/10.1016/j.jde.2019.11.014.
  4. Higher order Sobolev trace inequalities on balls revisited. Journal of Functional Analysis. 2020;278:108414. doi:https://doi.org/10.1016/j.jfa.2019.108414.
  5. On the sub poly-harmonic property for solutions of (-Δ)^p u <0 in R^n. Comptes Rendus Mathématique. 2017;355(5):526–532. doi:10.1016/j.crma.2017.04.003.
  6. Sharp reversed Hardy-Littlewood-Sobolev inequality on R^n. Israel Journal of Mathematics. 2017;220(1):189-223. doi:10.1007/s11856-017-1515-x.
  7. On radial solutions of Δ²u + u^{-q} = 0 in R³ with exactly quadratic growth at infinity. Differential and Integral Equations. 2017;30(11/12):917-928.
  8. Sharp reversed Hardy-Littlewood-Sobolev inequality on the half space R_+^n. International Mathematics Research Notices. 2017;2017(20):6168-6186.
  9. Einstein constraint equations on Riemannian manifolds. In: Geometric Analysis Around Scalar Curvatures. Geometric Analysis Around Scalar Curvatures. World Scientific; 2016:119-210. doi:10.1142/9789813100558_0003.